
www.blacksnwhite.com

NAME

ROLL
NUMBER

SEMESTER 2nd

COURSE
CODE

DCA1203

COURSE NAME Object Oriented Programming – C++

www.blacksnwhite.com

Q.1) Describe the various datatypes available in C++?

Answer .:-

C++ provides a set of basic building blocks for storing different kinds of data:

 Integer Types:

o int: Represents whole numbers (typically 4 bytes on most systems).

o short: Stores smaller integers (often 2 bytes).

o long: Holds larger integers (usually 4 bytes, but can be 8 bytes on some

architectures).

o long long: Can store very large integers (typically 8 bytes).

Choosing the appropriate integer type depends on the range of values you need to

represent and memory efficiency considerations.

 Floating-Point Types:

o float: Stores single-precision floating-point numbers (decimal numbers with a

fractional part, typically 4 bytes).

o double: Provides double-precision floating-point numbers (more accurate than

float, usually 8 bytes).

o long double: Offers extended-precision floating-point numbers (highest

precision, size can vary).

Use float for most calculations unless you require very high precision or a wider range,

in which case double or long double might be necessary.

 Character Types:

o char: Represents a single character (usually 1 byte).

o wchar_t: Stores a wide character for Unicode support (often 2 bytes).

o char16_t and char32_t: Support 16-bit and 32-bit Unicode characters,

respectively.

char is suitable for storing basic ASCII characters, while wchar_t and the Unicode

character types are used for representing characters from a wider range of languages.

 Boolean Type:

o bool: Represents logical values (true or false, typically 1 byte).

Use bool to store Boolean values for conditional statements and other logical

operations.

 SET - I

www.blacksnwhite.com

 Void Type:

o void: Indicates the absence of a specific data type.

void is used in function declarations to specify that the function doesn't return a value,

and for function parameters that don't require any arguments.

Derived Data Types:

C++ extends the functionality of fundamental datatypes by providing mechanisms to create

more complex data structures:

 Arrays:

o A fixed-size collection of elements of the same data type.

o Example: int numbers[10] declares an array of 10 integers.

 Pointers:

o Variables that store memory addresses of other variables.

o Allow for dynamic memory allocation and efficient manipulation of data

structures.

o Example: int* ptr = &number; creates a pointer ptr that points to the memory

location of the integer variable number.

 References:

o Aliases for existing variables, providing another way to access the same

memory location.

o Useful for passing arguments to functions by reference, avoiding unnecessary

copying of data.

o Example: int x = 10; int& ref = x; creates a reference ref that refers to the

same memory location as x.

 Enumerated Types (enums):

o User-defined data types consisting of named integer constants.

o Improve code readability by using meaningful names instead of raw integer

values.

o Example: enum Color { RED, GREEN, BLUE }; defines an enum Color with

constants RED, GREEN, and BLUE.

 Structures (structs):

o Composite data types that group variables of different data types under a

single name.

o Useful for representing real-world entities with various attributes.

www.blacksnwhite.com

o Example: struct Point { int x; int y; }; defines a struct Point with two integer

members x and y.

 Unions:

o Similar to structs, but all members share the same memory location.

o Useful when you know only one member will have a value at a time.

o Example: union Data { int num; float value; }; defines a union Data where

either num or value can be used, but not both simultaneously.

 Classes:

o Fundamental building blocks of object-oriented programming in C++.

o Encapsulate data (member variables) and behavior (member functions) within

a blueprint.

o Objects are instances of classes that provide data storage and operations

specific to that object type.

Q.2) What is the difference between the do-while and the while
statements?

Answer .:- The key difference between do-while and while loops in C++ lies in when

the loop's condition is checked:

do-while loop:

 Executes the loop body at least once, regardless of the initial condition.

 Checks the condition after the body has executed.

 Continues looping as long as the condition is true.

while loop:

 Checks the condition before executing the loop body.

 Executes the body only if the condition is true initially.

 Continues looping as long as the condition remains true.

Here's a table summarizing the key points:
Feature do-while loop while loop

Condition check After the body execution Before the body execution
Minimum runs At least once Zero times (if condition is false initially)

Example:

C++
int count = 10;

www.blacksnwhite.com

do {
 // Code to be executed at least once
 std::cout << count << " ";
 count--;
} while (count > 0);

while (count > 0) {
 // This code might not execute at all
 std::cout << count << " ";
 count--;
}

In this example:

 The do-while loop will always print the numbers from 10 down to 1, because it

executes the body at least once (even though count is initially 10).

 The while loop might not print anything at all if count happens to be 0 before the loop

begins.

When to use which:

 Use do-while when you guarantee the loop body needs to execute at least once,

regardless of the initial condition.

o Common scenarios include initialization steps or user input validation.

 Use while when the loop body might not need to execute at all, depending on the

initial condition.

o This is suitable for traditional iterative tasks where the loop continues as long

as a certain condition holds.

Q.3) Brief about class and objects.

Answer .:- C++, being an object-oriented programming (OOP) language,
revolves around the concepts of classes and objects. These concepts provide a
powerful way to model real-world entities and their interactions within your
programs.

Classes: Blueprints for Objects

 A class acts as a blueprint or template that defines the properties (data) and behaviors

(functions) of similar objects.

 It encapsulates data members (variables) and member functions (methods) that

operate on that data.

www.blacksnwhite.com

 Think of a class like a cookie cutter – it defines the shape and basic characteristics of

the cookies you'll create, but the individual cookies themselves are the objects.

Creating a Class:

C++
class Car {
public:
 // Data members (properties)
 int wheels;
 std::string color;

private:
 // Member functions (behaviors)
 void accelerate() {
 // Code to increase speed
 }

 void brake() {
 // Code to slow down
 }
};

 In this example, the Car class defines two data members: wheels (an integer) and color

(a string).

 It also has two private member functions, accelerate() and brake(), which presumably

control the speed of the car but their implementation details are hidden within the class.

Objects: Instances of a Class

 An object is a concrete instance of a class. It represents a particular entity with its own

set of properties and behaviors defined by the class.

 Just like baking multiple cookies from a single cookie cutter, you can create many Car

objects from the Car class.

Creating Objects:

C++
Car myCar; // Create an object named myCar of class Car
myCar.wheels = 4; // Set the wheels property of myCar
myCar.color = "red"; // Set the color property of myCar
myCar.accelerate(); // Call the accelerate() function on myCar

 Here, we create an object named myCar of type Car.

 We can then access and modify the data members (wheels and color) of myCar using

the dot notation.

 We can also call the member functions (accelerate()) on the object to invoke its behavior.

Benefits of Using Classes and Objects:

www.blacksnwhite.com

 Encapsulation: Classes promote data hiding by restricting direct access to data

members. Member functions control how data is accessed and modified, ensuring data

integrity.

 Code Reusability: Classes allow you to create reusable code templates. You can

define a class once and create multiple objects with the same functionality.

 Modular Design: Classes help break down complex programs into smaller,

manageable units, making code easier to understand, maintain, and modify.

 Real-World Modeling: Classes and objects provide a natural way to represent real-

world entities and their interactions in your program, leading to more intuitive and

maintainable code.

www.blacksnwhite.com

Q.4) Define exception. Explain exception handling mechanism.

Answer .:- Exceptions and Exception Handling in C++

Exceptions:

 In C++, exceptions represent unexpected or erroneous conditions that arise during

program execution. These are typically runtime errors that the program can potentially

recover from, unlike traditional program crashes.

 Examples of exceptions include:

o Division by zero

o Attempting to access an array element out of bounds

o Opening a file that doesn't exist

o Memory allocation failures

Exception Handling Mechanism:

C++ provides a structured approach to handling exceptions using three keywords: try, catch,

and throw. This mechanism allows you to isolate and deal with exceptional circumstances

gracefully, preventing program crashes and improving program robustness.

1. The try Block:

 The try block identifies the code section where an exception might potentially occur.

 Any code within the try block is monitored for exceptions.

2. The throw Statement:

 When an exceptional condition is encountered within the try block, a throw statement

is used to signal the error.

 The throw statement can optionally throw an object (an exception object) that carries

additional information about the error.

3. The catch Block:

 One or more catch blocks follow the try block.

 Each catch block specifies the type of exception it can handle.

 When an exception is thrown, the program searches for the first catch block that can

handle the type of exception thrown.

 If a matching catch block is found, the code within that block is executed to deal with

the exception.

 SET - II

www.blacksnwhite.com

Example:

C++
#include <iostream>

int main() {
 try {
 int num1 = 10;
 int num2 = 0;
 int result = num1 / num2; // Potential division by zero exception
 std::cout << "Result: " << result << std::endl;
 } catch (const std::exception& e) {
 std::cerr << "Error: " << e.what() << std::endl; // Handle the exception
 }

 return 0;
}

In this example:

 The try block contains the code that might cause an exception (division by zero).

 The catch block is designed to catch any std::exception (or a derived class of it).

 If a division by zero exception occurs, the catch block will be executed, printing an

error message to the standard error stream (std::cerr).

Benefits of Exception Handling:

 Improved Program Robustness: Exception handling allows programs to recover

from errors gracefully, preventing crashes and maintaining program execution.

 Error Isolation: Exceptions help localize error handling code, making the program

easier to understand and maintain.

 Cleaner Code: By separating normal program flow from error handling, exceptions

lead to more readable and maintainable code.

Q.5) List and explain the STL components.

Answer .:- The C++ Standard Template Library (STL) provides a powerful collection of

components that simplify data storage, manipulation, and algorithmic operations.

1. Containers:

 Containers are objects that hold collections of elements of the same or similar data

types.

 The STL offers a variety of containers, each with its own strengths and use cases:

www.blacksnwhite.com

o Vectors: Dynamic arrays that allow random access and efficient

insertions/deletions at the end (good for frequent appends/removals).

o Lists: Doubly-linked lists that enable efficient insertions/deletions at any

position (good for frequent insertions/removals anywhere).

o Deques (Double-ended queues): Similar to vectors but allow

insertions/deletions at both ends efficiently (good for FIFO/LIFO operations).

o Sets: Unordered collections of unique elements (useful for storing unique

values).

o Multisets: Unordered collections that can store duplicate elements (useful for

keeping track of element frequency).

o Maps: Associative containers that store key-value pairs, where each key is

unique and maps to a value (efficient for lookups based on keys).

o Multimaps: Similar to maps but allow duplicate keys (useful for storing

multiple values associated with a single key).

o Unordered sets and maps: Hash table-based versions of sets and maps,

offering faster average-case performance for lookups and insertions (but with

slightly less predictable behavior).

2. Iterators:

 Iterators act as pointers to elements within containers.

 They provide a way to traverse (visit) elements in a container and access their values.

 Different iterator categories exist, such as input iterators (read-only access), output

iterators (write-only access), forward iterators (one-directional traversal), and

bidirectional iterators (two-directional traversal).

 Iterators work seamlessly with algorithms, allowing them to operate on elements

within containers without knowing the specific container type.

3. Algorithms:

 The STL provides a rich set of generic algorithms that operate on containers and

iterators.

 These algorithms perform common operations like sorting, searching, finding

minimum/maximum elements, copying, transforming elements, and more.

 Algorithms are designed to be generic and work with various container and iterator

types, promoting code reusability.

4. Functors (Function Objects):

www.blacksnwhite.com

 Functors are objects that can be called like functions.

 They are used to customize the behavior of algorithms by providing custom logic for

comparisons, transformations, or other operations.

 Functors are particularly useful when you need to define a specific behavior for an

algorithm without writing a separate function.

Benefits of Using STL:

 Reduced Coding Effort: STL provides pre-built, efficient data structures and

algorithms, saving you time and effort compared to implementing them from scratch.

 Improved Code Readability: The use of generic algorithms and iterators leads to

cleaner and more concise code.

 Type Safety: STL components enforce type safety, reducing the risk of runtime errors.

 Flexibility and Reusability: STL components are designed to be generic and work

with various data types, promoting code reusability.

Q.6) Explain the types of methods to open a file.

Answer .:- In C++, there are several methods to open a file for different purposes, each

offering specific control over how you interact with the file. Here's a breakdown of the common

methods using the fstream class (which combines functionalities of ifstream for reading and

ofstream for writing):

1. Opening for Reading (ios::in):

 This method opens the file for reading existing data.

 Any attempt to write to the file will result in an error.

 Example:

C++
#include <fstream>
#include <iostream>

int main() {
 std::ifstream file("data.txt", std::ios::in); // Open "data.txt" for reading

 if (file.is_open()) {
 std::string line;
 while (std::getline(file, line)) {
 std::cout << line << std::endl; // Read and print each line
 }

www.blacksnwhite.com

 file.close(); // Close the file
 } else {
 std::cerr << "Error: Could not open file." << std::endl;
 }

 return 0;
}

2. Opening for Writing (ios::out):

 This method opens the file for writing.

 If the file doesn't exist, it will be created.

 Existing content in the file will be overwritten.

 Example:

C++
#include <fstream>
#include <iostream>

int main() {
 std::ofstream file("output.txt", std::ios::out); // Open "output.txt" for writing

 if (file.is_open()) {
 file << "This is some text to write to the file." << std::endl;
 file.close(); // Close the file
 } else {
 std::cerr << "Error: Could not open file." << std::endl;
 }

 return 0;
}

3. Opening for Appending (ios::app):

 This method opens the file for appending data to the end of its existing content.

 If the file doesn't exist, it will be created.

 New data will be written at the end of the file, preserving existing content.

 Example:

C++
#include <fstream>
#include <iostream>

int main() {
 std::ofstream file("log.txt", std::ios::app); // Open "log.txt" for appending

 if (file.is_open()) {
 file << "Adding a new log entry." << std::endl;
 file.close(); // Close the file
 } else {

www.blacksnwhite.com

 std::cerr << "Error: Could not open file." << std::endl;
 }

 return 0;
}

4. Opening in Binary Mode (ios::binary):

 This mode is used for opening binary files (like images or executables).

 It ensures that the file contents are read or written byte-for-byte without any character

interpretation.

 Often used in combination with ios::in or ios::out for binary data handling.

 Example (reading a binary image file):

C++
#include <fstream>
#include <iostream>

int main() {
 std::ifstream file("image.bmp", std::ios::binary | std::ios::in); // Open "image.bmp" in binary
mode for reading

 // ... (read image data in binary format)

 file.close(); // Close the file
}

5. Opening with Truncation (ios::trunc):

 This mode, often used with ios::out or ios::app, discards any existing content in the

file before opening it.

 Similar to creating a new file, but the existing file path is used.

 Example:

C++
#include <fstream>
#include <iostream>

int main() {
 std::ofstream file("data.txt", std::ios::out | std::ios::trunc); // Open "data.txt" for writing,
truncating existing content

 if (file.is_open()) {
 file << "This will overwrite any existing data." << std::endl;
 file.close(); // Close the file
 } else {
 std::cerr << "Error: Could not open file." << std::endl;
 }

 return 0;

www.blacksnwhite.com

}

6. Opening with Error Handling:

 It's crucial to check if the file was successfully opened using the is_open() member

function.

 If `is

