
www.blacksnwhite.com

NAME

ROLL
NUMBER

SEMESTER 2nd

COURSE
CODE

DCA1203

COURSE NAME Object Oriented Programming – C++

www.blacksnwhite.com

Q.1) Describe the various datatypes available in C++?

Answer .:-

C++ provides a set of basic building blocks for storing different kinds of data:

 Integer Types:

o int: Represents whole numbers (typically 4 bytes on most systems).

o short: Stores smaller integers (often 2 bytes).

o long: Holds larger integers (usually 4 bytes, but can be 8 bytes on some

architectures).

o long long: Can store very large integers (typically 8 bytes).

Choosing the appropriate integer type depends on the range of values you need to

represent and memory efficiency considerations.

 Floating-Point Types:

o float: Stores single-precision floating-point numbers (decimal numbers with a

fractional part, typically 4 bytes).

o double: Provides double-precision floating-point numbers (more accurate than

float, usually 8 bytes).

o long double: Offers extended-precision floating-point numbers (highest

precision, size can vary).

Use float for most calculations unless you require very high precision or a wider range,

in which case double or long double might be necessary.

 Character Types:

o char: Represents a single character (usually 1 byte).

o wchar_t: Stores a wide character for Unicode support (often 2 bytes).

o char16_t and char32_t: Support 16-bit and 32-bit Unicode characters,

respectively.

char is suitable for storing basic ASCII characters, while wchar_t and the Unicode

character types are used for representing characters from a wider range of languages.

 Boolean Type:

o bool: Represents logical values (true or false, typically 1 byte).

Use bool to store Boolean values for conditional statements and other logical

operations.

 SET - I

www.blacksnwhite.com

 Void Type:

o void: Indicates the absence of a specific data type.

void is used in function declarations to specify that the function doesn't return a value,

and for function parameters that don't require any arguments.

Derived Data Types:

C++ extends the functionality of fundamental datatypes by providing mechanisms to create

more complex data structures:

 Arrays:

o A fixed-size collection of elements of the same data type.

o Example: int numbers[10] declares an array of 10 integers.

 Pointers:

o Variables that store memory addresses of other variables.

o Allow for dynamic memory allocation and efficient manipulation of data

structures.

o Example: int* ptr = &number; creates a pointer ptr that points to the memory

location of the integer variable number.

 References:

o Aliases for existing variables, providing another way to access the same

memory location.

o Useful for passing arguments to functions by reference, avoiding unnecessary

copying of data.

o Example: int x = 10; int& ref = x; creates a reference ref that refers to the

same memory location as x.

 Enumerated Types (enums):

o User-defined data types consisting of named integer constants.

o Improve code readability by using meaningful names instead of raw integer

values.

o Example: enum Color { RED, GREEN, BLUE }; defines an enum Color with

constants RED, GREEN, and BLUE.

 Structures (structs):

o Composite data types that group variables of different data types under a

single name.

o Useful for representing real-world entities with various attributes.

www.blacksnwhite.com

o Example: struct Point { int x; int y; }; defines a struct Point with two integer

members x and y.

 Unions:

o Similar to structs, but all members share the same memory location.

o Useful when you know only one member will have a value at a time.

o Example: union Data { int num; float value; }; defines a union Data where

either num or value can be used, but not both simultaneously.

 Classes:

o Fundamental building blocks of object-oriented programming in C++.

o Encapsulate data (member variables) and behavior (member functions) within

a blueprint.

o Objects are instances of classes that provide data storage and operations

specific to that object type.

Q.2) What is the difference between the do-while and the while
statements?

Answer .:- The key difference between do-while and while loops in C++ lies in when

the loop's condition is checked:

do-while loop:

 Executes the loop body at least once, regardless of the initial condition.

 Checks the condition after the body has executed.

 Continues looping as long as the condition is true.

while loop:

 Checks the condition before executing the loop body.

 Executes the body only if the condition is true initially.

 Continues looping as long as the condition remains true.

Here's a table summarizing the key points:
Feature do-while loop while loop

Condition check After the body execution Before the body execution
Minimum runs At least once Zero times (if condition is false initially)

Example:

C++
int count = 10;

www.blacksnwhite.com

do {
 // Code to be executed at least once
 std::cout << count << " ";
 count--;
} while (count > 0);

while (count > 0) {
 // This code might not execute at all
 std::cout << count << " ";
 count--;
}

In this example:

 The do-while loop will always print the numbers from 10 down to 1, because it

executes the body at least once (even though count is initially 10).

 The while loop might not print anything at all if count happens to be 0 before the loop

begins.

When to use which:

 Use do-while when you guarantee the loop body needs to execute at least once,

regardless of the initial condition.

o Common scenarios include initialization steps or user input validation.

 Use while when the loop body might not need to execute at all, depending on the

initial condition.

o This is suitable for traditional iterative tasks where the loop continues as long

as a certain condition holds.

Q.3) Brief about class and objects.

Answer .:- C++, being an object-oriented programming (OOP) language,
revolves around the concepts of classes and objects. These concepts provide a
powerful way to model real-world entities and their interactions within your
programs.

Classes: Blueprints for Objects

 A class acts as a blueprint or template that defines the properties (data) and behaviors

(functions) of similar objects.

 It encapsulates data members (variables) and member functions (methods) that

operate on that data.

www.blacksnwhite.com

 Think of a class like a cookie cutter – it defines the shape and basic characteristics of

the cookies you'll create, but the individual cookies themselves are the objects.

Creating a Class:

C++
class Car {
public:
 // Data members (properties)
 int wheels;
 std::string color;

private:
 // Member functions (behaviors)
 void accelerate() {
 // Code to increase speed
 }

 void brake() {
 // Code to slow down
 }
};

 In this example, the Car class defines two data members: wheels (an integer) and color

(a string).

 It also has two private member functions, accelerate() and brake(), which presumably

control the speed of the car but their implementation details are hidden within the class.

Objects: Instances of a Class

 An object is a concrete instance of a class. It represents a particular entity with its own

set of properties and behaviors defined by the class.

 Just like baking multiple cookies from a single cookie cutter, you can create many Car

objects from the Car class.

Creating Objects:

C++
Car myCar; // Create an object named myCar of class Car
myCar.wheels = 4; // Set the wheels property of myCar
myCar.color = "red"; // Set the color property of myCar
myCar.accelerate(); // Call the accelerate() function on myCar

 Here, we create an object named myCar of type Car.

 We can then access and modify the data members (wheels and color) of myCar using

the dot notation.

 We can also call the member functions (accelerate()) on the object to invoke its behavior.

Benefits of Using Classes and Objects:

www.blacksnwhite.com

 Encapsulation: Classes promote data hiding by restricting direct access to data

members. Member functions control how data is accessed and modified, ensuring data

integrity.

 Code Reusability: Classes allow you to create reusable code templates. You can

define a class once and create multiple objects with the same functionality.

 Modular Design: Classes help break down complex programs into smaller,

manageable units, making code easier to understand, maintain, and modify.

 Real-World Modeling: Classes and objects provide a natural way to represent real-

world entities and their interactions in your program, leading to more intuitive and

maintainable code.

www.blacksnwhite.com

Q.4) Define exception. Explain exception handling mechanism.

Answer .:- Exceptions and Exception Handling in C++

Exceptions:

 In C++, exceptions represent unexpected or erroneous conditions that arise during

program execution. These are typically runtime errors that the program can potentially

recover from, unlike traditional program crashes.

 Examples of exceptions include:

o Division by zero

o Attempting to access an array element out of bounds

o Opening a file that doesn't exist

o Memory allocation failures

Exception Handling Mechanism:

C++ provides a structured approach to handling exceptions using three keywords: try, catch,

and throw. This mechanism allows you to isolate and deal with exceptional circumstances

gracefully, preventing program crashes and improving program robustness.

1. The try Block:

 The try block identifies the code section where an exception might potentially occur.

 Any code within the try block is monitored for exceptions.

2. The throw Statement:

 When an exceptional condition is encountered within the try block, a throw statement

is used to signal the error.

 The throw statement can optionally throw an object (an exception object) that carries

additional information about the error.

3. The catch Block:

 One or more catch blocks follow the try block.

 Each catch block specifies the type of exception it can handle.

 When an exception is thrown, the program searches for the first catch block that can

handle the type of exception thrown.

 If a matching catch block is found, the code within that block is executed to deal with

the exception.

 SET - II

www.blacksnwhite.com

Example:

C++
#include <iostream>

int main() {
 try {
 int num1 = 10;
 int num2 = 0;
 int result = num1 / num2; // Potential division by zero exception
 std::cout << "Result: " << result << std::endl;
 } catch (const std::exception& e) {
 std::cerr << "Error: " << e.what() << std::endl; // Handle the exception
 }

 return 0;
}

In this example:

 The try block contains the code that might cause an exception (division by zero).

 The catch block is designed to catch any std::exception (or a derived class of it).

 If a division by zero exception occurs, the catch block will be executed, printing an

error message to the standard error stream (std::cerr).

Benefits of Exception Handling:

 Improved Program Robustness: Exception handling allows programs to recover

from errors gracefully, preventing crashes and maintaining program execution.

 Error Isolation: Exceptions help localize error handling code, making the program

easier to understand and maintain.

 Cleaner Code: By separating normal program flow from error handling, exceptions

lead to more readable and maintainable code.

Q.5) List and explain the STL components.

Answer .:- The C++ Standard Template Library (STL) provides a powerful collection of

components that simplify data storage, manipulation, and algorithmic operations.

1. Containers:

 Containers are objects that hold collections of elements of the same or similar data

types.

 The STL offers a variety of containers, each with its own strengths and use cases:

www.blacksnwhite.com

o Vectors: Dynamic arrays that allow random access and efficient

insertions/deletions at the end (good for frequent appends/removals).

o Lists: Doubly-linked lists that enable efficient insertions/deletions at any

position (good for frequent insertions/removals anywhere).

o Deques (Double-ended queues): Similar to vectors but allow

insertions/deletions at both ends efficiently (good for FIFO/LIFO operations).

o Sets: Unordered collections of unique elements (useful for storing unique

values).

o Multisets: Unordered collections that can store duplicate elements (useful for

keeping track of element frequency).

o Maps: Associative containers that store key-value pairs, where each key is

unique and maps to a value (efficient for lookups based on keys).

o Multimaps: Similar to maps but allow duplicate keys (useful for storing

multiple values associated with a single key).

o Unordered sets and maps: Hash table-based versions of sets and maps,

offering faster average-case performance for lookups and insertions (but with

slightly less predictable behavior).

2. Iterators:

 Iterators act as pointers to elements within containers.

 They provide a way to traverse (visit) elements in a container and access their values.

 Different iterator categories exist, such as input iterators (read-only access), output

iterators (write-only access), forward iterators (one-directional traversal), and

bidirectional iterators (two-directional traversal).

 Iterators work seamlessly with algorithms, allowing them to operate on elements

within containers without knowing the specific container type.

3. Algorithms:

 The STL provides a rich set of generic algorithms that operate on containers and

iterators.

 These algorithms perform common operations like sorting, searching, finding

minimum/maximum elements, copying, transforming elements, and more.

 Algorithms are designed to be generic and work with various container and iterator

types, promoting code reusability.

4. Functors (Function Objects):

www.blacksnwhite.com

 Functors are objects that can be called like functions.

 They are used to customize the behavior of algorithms by providing custom logic for

comparisons, transformations, or other operations.

 Functors are particularly useful when you need to define a specific behavior for an

algorithm without writing a separate function.

Benefits of Using STL:

 Reduced Coding Effort: STL provides pre-built, efficient data structures and

algorithms, saving you time and effort compared to implementing them from scratch.

 Improved Code Readability: The use of generic algorithms and iterators leads to

cleaner and more concise code.

 Type Safety: STL components enforce type safety, reducing the risk of runtime errors.

 Flexibility and Reusability: STL components are designed to be generic and work

with various data types, promoting code reusability.

Q.6) Explain the types of methods to open a file.

Answer .:- In C++, there are several methods to open a file for different purposes, each

offering specific control over how you interact with the file. Here's a breakdown of the common

methods using the fstream class (which combines functionalities of ifstream for reading and

ofstream for writing):

1. Opening for Reading (ios::in):

 This method opens the file for reading existing data.

 Any attempt to write to the file will result in an error.

 Example:

C++
#include <fstream>
#include <iostream>

int main() {
 std::ifstream file("data.txt", std::ios::in); // Open "data.txt" for reading

 if (file.is_open()) {
 std::string line;
 while (std::getline(file, line)) {
 std::cout << line << std::endl; // Read and print each line
 }

www.blacksnwhite.com

 file.close(); // Close the file
 } else {
 std::cerr << "Error: Could not open file." << std::endl;
 }

 return 0;
}

2. Opening for Writing (ios::out):

 This method opens the file for writing.

 If the file doesn't exist, it will be created.

 Existing content in the file will be overwritten.

 Example:

C++
#include <fstream>
#include <iostream>

int main() {
 std::ofstream file("output.txt", std::ios::out); // Open "output.txt" for writing

 if (file.is_open()) {
 file << "This is some text to write to the file." << std::endl;
 file.close(); // Close the file
 } else {
 std::cerr << "Error: Could not open file." << std::endl;
 }

 return 0;
}

3. Opening for Appending (ios::app):

 This method opens the file for appending data to the end of its existing content.

 If the file doesn't exist, it will be created.

 New data will be written at the end of the file, preserving existing content.

 Example:

C++
#include <fstream>
#include <iostream>

int main() {
 std::ofstream file("log.txt", std::ios::app); // Open "log.txt" for appending

 if (file.is_open()) {
 file << "Adding a new log entry." << std::endl;
 file.close(); // Close the file
 } else {

www.blacksnwhite.com

 std::cerr << "Error: Could not open file." << std::endl;
 }

 return 0;
}

4. Opening in Binary Mode (ios::binary):

 This mode is used for opening binary files (like images or executables).

 It ensures that the file contents are read or written byte-for-byte without any character

interpretation.

 Often used in combination with ios::in or ios::out for binary data handling.

 Example (reading a binary image file):

C++
#include <fstream>
#include <iostream>

int main() {
 std::ifstream file("image.bmp", std::ios::binary | std::ios::in); // Open "image.bmp" in binary
mode for reading

 // ... (read image data in binary format)

 file.close(); // Close the file
}

5. Opening with Truncation (ios::trunc):

 This mode, often used with ios::out or ios::app, discards any existing content in the

file before opening it.

 Similar to creating a new file, but the existing file path is used.

 Example:

C++
#include <fstream>
#include <iostream>

int main() {
 std::ofstream file("data.txt", std::ios::out | std::ios::trunc); // Open "data.txt" for writing,
truncating existing content

 if (file.is_open()) {
 file << "This will overwrite any existing data." << std::endl;
 file.close(); // Close the file
 } else {
 std::cerr << "Error: Could not open file." << std::endl;
 }

 return 0;

www.blacksnwhite.com

}

6. Opening with Error Handling:

 It's crucial to check if the file was successfully opened using the is_open() member

function.

 If `is

